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Persistence of zero modes in a gauged Dirac model for bilayer graphene
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A recently constructed model for low-lying excitations in bilayer graphene exhibits midgap, zero-energy
modes in its Dirac-type spectrum when a scalar order parameter takes a vortex profile. We show that these
modes persist when the dynamics is extended by a gauge field interaction, which also renders finite the vortex
energy. The effect of the gauge field on the zero-energy wave function is to shift the phase of the (damped)
oscillatory component of the wave function in the absence of the gauge field.
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The old subject of Dirac zero modes and fractional
charge! revived recently, owing to the emergence of
graphene as an experimentally realized planar substance,’
whose low-energy excitations can be described by a Dirac
equation in two spatial dimensions.? If the material exhibits
various dimerization patterns, the effective Dirac fields also
interact with a homogenous scalar field (order parameter),
and this gives rise to a gap in the Dirac spectrum. When the
scalar field acquires a topologically interesting profile (e.g., a
vortex in which the phase of the scalar field winds around the
vortex position), a zero-energy, midgap state can occur with
fractional (fermion) charge.!

An early instance of planar Dirac zero modes was found
in Ref. 4, but no actual experimental setting was given. To-
day graphene and graphene-like substances offer the possi-
bility of a physical realization.

Monolayer graphene consists of a hexagonal honeycomb
lattice, which may be presented as a superposition of two
triangular sublattices A and B. In the tight-binding approxi-
mation, there are two Dirac points. If a particular
dimerization—called Kekulé distortion—occurs, the effec-
tive Dirac Hamiltonian also possesses an interaction with a
scalar field @,

hy=ap+ Blele™x. (1)
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The 4 X4 Dirac Hamiltonian /4, acts on a four-spinor V,
y?
V= , (2)

where (*) refer to the two Dirac points and (A, B) label the
sublattices. The vector quantities p, e, and o are two dimen-
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PACS number(s): 62.23.—c, 62.25.—¢

sional. The kinetic term a-p does not mix the Dirac points;
mixing arises through ¢ as a consequence of the Kekulé
distortion. Homogenous ¢=m produces a mass gap, while an

n-vortex profile for ¢(r) produces zero modes. The Hamil-
a3 0
0 —0'3)’

azhyaz=—h;. (3)

tonian [Eq. (1)] anticommutes with az=(

Therefore a3 maps positive energy solutions onto negative
energy solutions, and zero modes can be chosen to be eigen-
modes of a3. This “energy reflection symmetry” is a mani-
festation of the sublattice symmetry found in the honeycomb
graphene lattice.

The above model was extended by including an interac-
tion with a gauge field, A, whose purpose is to unpin the
vortices.® [The energy density of the vortex is not included in
Eq. (4), below. Were one to consider it without a gauge field
contribution, one would encounter an infrared divergence,
arising from the gradients of the scalar field. This divergence
is screened by the vector potential.] Here,

W =a-(p-ysA)+ Bloe 75X, 4)
The gauged model possesses a local chiral gauge symmetry

V%Y, oo =y — x+ 2,

A—A+Vo, (5)
and one readily verifies the identity
A 1 1
hy =exp a3§b h, exp a3€b , (6)
b=g"9Al. (7)

Thus the extended model still retains the energy reflection
symmetry, and possesses zero-energy eigenmodes, whose
wave functions differ from those with just a scalar vortex by
the factor =3/,

However, it may be difficult to achieve experimentally the
Kekulé distortion. Recently a model that is physically differ-
ent but mathematically similar to Eq. (1) has been put for-
ward, with the suggestion that the excitation condensate—
needed for topological effects, fractional charge etc.—can
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“be produced in the laboratory in the near future.”’” The
physical system consists of a graphene bilayer, separated by
a dielectric barrier, and biased by an external, constant volt-
age V. In a mean-field approximation, the Hamiltonian for
the above bilayer system is given by

hy=a-p+ Blele™ "X+ ysV, (8)
which acts on the four-spinor W,

i

1
w=| 1. (9)

h
¥

As before (A, B) refer to the sublattices, but (1, 2) label the
two layers, which are nested, one directly above the other.
There are no Dirac point labels because the above descrip-
tion refers to a single Dirac point in each lattice of the two
stacked lattices. Here ¢ describes the condensate arising
from states bound by interlayer Coulomb forces between par-
ticles in one layer and holes in the other. This dynamics is
modeled by a four-Fermi interaction of strength U. A gap
equation is solved in the Hartee-Fock approximation, leading
to

gl ~ VAV LY. (10)

Here  is the hopping amplitude between sites on each of the
two monolayers; there is no interlayer hopping within this
model’s approximations. Equation (10) holds in the limit A
> V> |¢|, where A is an energy cutoff.” It is striking that this
order parameter enters the bilayer theory in a way identical
to the Kekulé distortion of the monolayer model /; in Eq.
(D).

The presence of sV in h,, which has no analog in #,,
spoils the energy reflection symmetry [Eq. (3)]. But another
property of h, ensures similar behavior. One verifies that &,
satisfies

BayhsBay = hs. (11)
Thus energy reflection works as
V_p= BV, (12)
and h, possesses zero-energy eigenstates, satisfying’
a,BY,=V,. (13)

In view of our earlier work on gauging the monolayer
graphene model,® we are led to study the gauged version of
hy,

hy=a-(p-ysA)+ Blele "X+ ysV. (14)

Gauge transformations follow Eq. (5) and V is gauge invari-
ant. The new energy reflection property [Egs. (11) and (12)]
is maintained. Consequently we expect to find zero modes,
which we now exhibit.

The four-spinor equation [Eq. (9)] is presented in terms of
two spinors,
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With our Dirac matrices, the zero-energy spinors satisfy ac-
cording to Eq. (13) ¥,=0,W¥], and the eigenvalue equation
reads

[U'(p—A)+V]\I,1+QDO'2\I,T=O, (163.)

oW, —[o-(p-A)+V]e, V' =0. (16b)

In fact, the second equation is a consequence of the first,
and needs not be considered separately. Continuing with the
matrix reduction, we set ‘Pl(r):(g((';)), and Eq. (16) now

reads

. n .
VG—ie’0[0++ —A]F+ime”’9F*=O, (17a)
r

VF - ie-m[a_ - EA} G—ime™G*=0,  (17b)

,
g id
Jo=—*i-—,
or roo

where we have taken Aiz—ns’:":—;A(r), with A(0)=0, A()
:%, and e=m(r)e™?, with m(0)=0 and m()=m.

To separate the angular dependence, to make the equa-
tions real, and to simplify them, we posit the Ansatz

F(r)=- l-fL:)e—[M(r)—illa],
\r

(18a)

G(r) = @ o IM(=ity6]
\Nr

(18b)

ll=%, lz=%, M'(r)=m(r), and f, g are real. Single val-

uedness requires that n be an odd integer. The final equations

read
n(l
{(%—‘(‘—A)}f— Vg=0,
r\2

d.+—|-—-A|lg+Vf=0.
r\2

When A remains unspecified (apart from its asymptotes) Eq.
(19) does not appear explicitly integrable and A cannot be
removed, as in the monolayer case [Eq. (6) and (7)]. How-
ever, one can show that a normalizable solution exists.

For r— oo, AH% and Eq. (19) reduce to

(19a)

(19b)

f'=Vg=0, (20a)
¢ +Vf=0, (20b)

with solution that involves two constants, (c,d),
f(r)=ccos Vr+d sin Vr, (21a)
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(21b)

Evidently owing to the r~"2¢7") factor both F and G are
always damped at large r. Thus the wave function will be
acceptable and normalizable if a solution that is regular at
the origin can be constructed.

At the origin A vanishes and the Eq. (19) reduces to

g(r)==csin Vr+d cos Vr.

<———> -Vg=0 (22a)
ar 2r f § ’ 4
(—(9 —) V=0 (22b)
PR L f=0.

Of course these are the same equations, which hold for all »
in the absence of A, as with the Hamiltonian 4, in Eq. (8).
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Their solution is given in terms of Bessel functions,’

f= r”2J,,/2_1/2(V"), g=—”1/2Jn/2+1/2(Vr)- (23)

Note that the large r asymptote of Eq. (23) is of the form
(21) with specific values for c=\/gcos% and d= Esin%.
Thus the effect of the gauge field is to move ¢ and d from the
above values; i.e., A causes a phase shift in the profiles with-

out gauge field.
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